Ph:816-590-9641 fx:253-663-9333 Web:httP://gtspc.com/IXChange/

- 1. General Resin
- 2. Dual Bed, Floating Bed Resin
- 3. Mixed Bed Resin
- 4. Condensate Polishing Resin
- 5. Acrylic Acid Resin
- 6. Chelating Resin
- 7. Wet Metallurgy Resin
- 8. Medication, Amino Acid Extraction Resin
- 9. Amphoteric Resin
- 10. Decolorizing Resin
- 11. Macroporous Adsorbent
- 12. Catalysis Resin
- 13. Food, Drink Water Treatment Resin
- 14. Nuclear Grade Resin
- 15. Nuclear Grade Resin Standards

General Resin Series

	esin Series							r				
Product Name	Туре	Matrix	Function Group	Ionic Form	Moisture Content %	Total Exchange Capacity (mmol/g)	Total Exchange Capacity (mmol/ml)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Physical Strongth* (%)	Applications
ZGC107	strongly acidic	polystyrene	-SO3 ⁻	Na ⁺	45~50	>4.5	>1.9	0.77~0.87	1.25~1.29	0.315~1.25mm >95	>90 (for gel)	Water softening and preparation of pure water, wet metallurgy, sugar refining , pharmaceuticals, glutamic acid preparation, and as dehydrating agent and catalysts.
ZGC108	strongly acidic	polystyrene	-SO3-	Na ⁺	45~50	>4.4	>1.9	0.78~0.88	1.25~1.30	0.315~1.25mm >95	>90 (for gel)	Water softening and preparation of pure water, with good exchange capacity and physical stability.
ZGC110	strongly acidic	polystyrene	-SO3-	Na ⁺	38~45	>4.2	>2.0	0.80~0.90	1.28~1.34	0.315~1.25mm >95	>90 (for gel)	Water softening and preparation of pure water, with excellent physical stability and anti-oxidation property.
ZGC216	weakly acidic	acrylic acid	-COO ⁻	H^{+}	45~55	>11.0	>4.0	0.68~0.78	1.14~1.18	0.315~1.25mm >95	>90 (for gel)	Water softening, dealkalination, desalination, waste water treatment, recovery of noble metals.
ZGA304	strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	50~60	>3.8	>1.1	0.66~0.71	1.06~1.10	0.315~1.25mm >95	>90 (for gel)	Preparation of pure water, sugar liquor decolorization, separation and purification of biomedical products, extraction of radioactive elements.
ZGA307	strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	Cl	42~48	>3.6	>1.4	0.67~0.73	1.07~1.10	0.315~1.25mm >95	>90 (for gel)	Preparation of pure water, separation and purification of antibiotics, extraction of radioactive elements.
ZGA302	strongly basic type II	polystyrene	$\neg \mathbb{N}^* <^{(\mathbb{CH}_3)_2}_{\mathbb{C}_2 \mathbb{H}_4 \mathbb{OH}}$	Cl	36~46	>3.4	>1.4	0.68~0.76	1.09~1.16	0.315~1.25mm >95	>90 (for gel)	Preparation of pure water, especially for water source with higher salt content, separation of biochemicals.
ZGC151	macroporous strongly acidic	polystyrene	-SO3-	Na ⁺	45~55	>4.35	>1.75	0.75~0.85	1.25~1.28	0.315~1.25mm >95	>90 (for macroporous)	Water softening and preparation of pure water, waste water treatment, recovery of noble metals, and as acidic catalysts.
ZGC258	macroporous weakly acidic	acrylic acid	-COO ⁻	H^{+}	45~52	>11.0	>4.2	0.72~0.80	1.14~1.20	0.315~1.25mm >95	>90 (for macroporous)	Water softening, dealkalination, desalination, recovery of Zine and nickel in waste water, separation and purification of biochemicals.
ZGA351	macroporous strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	Cl	50~60	>3.8	>1.15	0.65~0.73	1.06~1.10	0.315~1.25mm >95	>90 (for macroporous)	Preparation of pure water, recovery of heavy metals, wet metallurgy.
ZGA352	macroporous strongly basic type II	polystyrene	$-N^{+} < \stackrel{(CH_{3})_{2}}{C_{2}H_{4}OH}$	CI	47~57	>3.6	>1.2	0.68~0.73	1.07~1.12	0.315~1.25mm >95	>90 (for macroporous)	Preparation of pure water, especially for water source with higher salt content, decolorization of sugar liquor and separation of biochemicals.

ZGA451	macroporous weakly basic	polystyrene	-N(CH ₃) ₂ .H ₂ O	free amine	48~58	>4.8	>1.4	0.65~0.72	1.03~1.06	0.315~1.25mm >95	>90 (for	Preparation of pure water, especially for water source with higher salt and organic ,waste water treatment in electroplating to remove Cr.
--------	-----------------------------	-------------	---	------------	-------	------	------	-----------	-----------	---------------------	----------	---

physical strength*

for macroporous resins: spherical percentage after osmosis shock and then grading

for gel resins: spherical percentage after grading

<u>Back</u>

Dual Bed, Floating Bed Resin Series

Product Name	Туре	Matrix	Function Group		Moisture Content %	Total Exchange Capacity (mmol/g)	Total Exchange Capacity (mmol/ml)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Physical Strongth* (%)	Applications
ZGC102SC	strongly acidic	polystyrene	-SO3 ⁻	Na ⁺	38~43	>4.4	>2.1	0.81~0.87	1.24~1.30	0.63~1.25mm >95	>95 (for gel)	
ZGC152SC	macroporous strongly acidic	polystyrene	-SO3-	Na ⁺	38~48	>4.0	>1.9	0.80~0.90	1.24~1.30	0.50~1.40mm >95	>90 (for macroporous)	Strongly acidic cationic resin together with and weak acidic cationic resin, used in dual bed to prepare pure water, and extra pure water. The real
ZGC151SC	macroporous strongly acidic	polystyrene	-SO3	Na ⁺	45~55	>4.35	>1.7	0.75~0.85	1.25~1.28	0.63~1.25mm >95	>90 (for macroporous)	density and particle size range of two resins are quite different. They can be easily separated.
ZGC258SC	macroporous weakly acidic	acrylic acid	-COO ⁻	H^+	45~52	>11.0	>4.2	0.72~0.80	1.14~1.20	0.315~0.63mm >95	>90 (for macroporous)	
ZGA307SC	strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	42~48	>3.6	>1.3	0.67~0.73	1.07~1.10	0.63~1.25mm >95	>90 (for gel)	Cu
ZGA351SC	macroporous strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	50~60	>3.8	>1.1	0.65~0.73	1.05~1.10	0.63~1.25mm >95	>90 (for macroporous)	Strongly basic anionic resin together with weak basic resin used in dual bed, to prepare pure water and extra pure water. The real density and
ZGA352SC	macroporous strongly basic type II	polystyrene	$-N^{+} < \stackrel{(CH_{3})_{2}}{C_{2}H_{4}OH}$	CI	47~57	>3.6	>1.2	0.68~0.73	1.07~1.12	0.63~1.25mm >95	>90 (for macroporous)	particle size range of two resins are quite different. They can be easily separated.
ZGA451SC	macroporous weakly basic	polystyrene	-N(CH ₃) ₂ ·H ₂ O	free amine	48~58	>4.8	>1.4	0.65~0.72	1.03~1.06	0.315~0.63mm >95	>90 (for macroporous)	
ZGC107FC	strongly acidic	polystyrene	-SO ₃ ⁻	Na ⁺	45~50	>4.5	>1.9	0.77~0.87	1.25~1.29	0.45~1.25mm >95	>90 (for gel)	Strongly acidic cationic resin together with weak acidic cationic resin used in cationic double
ZGC151FC	macroporous strongly acidic	polystyrene	-SO3	Na ⁺	45~55	>4.35	>1.7	0.75~0.85	1.25~1.28	0.45~1.25mm >95	>90 (for macroporous)	compartment bed, cationic double compartment floating bed to prepare pure water, extreme pure water. It can also be used separately in floating bed system.
ZGC258FC	macroporous weakly acidic	acrylic acid	-COO ⁻	H+	45~52	>11.0	>4.2	0.72~0.80	1.14~1.20	0.45~1.25mm >95	>90 (for macroporous)	bed system.
ZGA307FC	strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	42~48	>3.6	>1.4	0.67~0.73	1.07~1.10	0.45~1.25mm >95	>90 (for gel)	Strongly basic anionic resin together with weak
ZGA351FC	macroporous strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	50~60	>3.8	>1.15	0.65~0.73	1.05~1.10	0.45~1.25mm >95	>90 (for macroporous)	basic anionic resin used in anionic double compartment bed, anionic double compartment floating bed to prepare pure water, extreme pure
ZGA352FC	macroporous strongly basic type II	polystyrene	$-N^{+} < ^{(CH_{3})_{2}}_{C_{2}H_{4}OH}$	CI	47~57	>3.6	>1.2	0.68~0.73	1.07~1.12	0.45~1.25mm >95	>90 (for macroporous)	water. It can also be used separately in floating bed system.
ZGA451FC	macroporous weakly basic	polystyrene	-N(CH ₃) ₂ ·H ₂ O	free amine	48~58	>4.8	>1.4	0.65~0.72	1.03~1.06	0.45~1.25mm >95	>90 (for macroporous)	
ZGA307SF	strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	42~48	>3.6	>1.4	0.65~0.73	1.07~1.10	0.60~1.25mm >95	>90 (for gel)	Used in anionic double compartment bed, anionic double compartment floating bed, or in floating bed system.
ZGFB-1	floating bed white bead	inert plastic beads	-	-	<6	-	-	-	0.15~0.35	0.80~2.0mm	-	Used in floating bed, double compartment bed,
ZGFB-2	floating bed white bead	inert plastic beads	-	-	<6	-	-	-	0.25~0.40	1.0~2.5mm	-	double compartment floating bed system.

physical strength*

for macroporous resins: spherical percentage after osmosis shock and then grading

for gel resins: spherical percentage after grading

<u>Back</u>

Mixed Bed Resin Series

Product Name	Туре	Matrix	Function Group		Moisture Content %	Total Exchange Capacity (mmol/g)	Total Exchange Capacity (mmol/ml)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Physical Strongth* (%)	Applications
ZGC107MB	strongly acidic	polystyrene	-SO3-	Na ⁺	45~50	>4.4	>1.8	0.77~0.87	1.25~1.29	0.71~1.25mm >95	>90 (for gel)	Preparation of pure water, extreme pure water, in
ZGA307MB	strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	42~48	>3.6	>1.4	0.67~0.73	1.07~1.10	0.40~0.90mm >95	>90 (for gel)	mixed bed, with good hydraulic characteristics and physical stability.
ZGC151MB	macroporous strongly acidic	polystyrene	-SO3 ⁻	Na ⁺	45~55	>4.35	>1.7	0.75~0.85	1.25~1.28	0.63~1.25mm >95	>90 (for macroporous)	Preparation of pure water, extreme pure water in mixed bed, with good hydraulic characteristics,
	macroporous strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	50~60	>3.8	>1.15	0.65 ~0.73	1.05~1.10	0.40 ~0.90mm >95	>90 (for macroporous)	physical stability and anti-oxidation property.
ZGC151TR	macroporous strongly acidic	polystyrene	-SO3 ⁻	Na ⁺	45~55	>4.35	>1.7	0.75 ~0.85	1.25~1.28	0.71 ~1.25mm >98	>95 (for macroporous)	Used in triple mixed bed used for preparation of pure water, extreme pure water, and condensate
ZGA351TR	macroporous strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	50~60	>3.8	>1.15	0.65 ~0.73	1.05~1.09	0.45 ~0.90mm >98	>95 (for macroporous)	polishing, with excellent hydraulic characteristics. It can prevent mutual contamination of cationic and anionic resin, thus
ZGS-TR	inert resin	copolymer	-	-	<12	-	-	0.67 ~0.72	1.14 ~1.17	0.71 ~0.90mm >98	>95 (for macroporous)	promote quality and cycle water production.
ZGBK001	strongly acidic black resin	polystyrene	-SO3 ⁻	Na ⁺	45 ~50	>4.5	>1.9	0.78 ~0.88	1.25 ~1.30	0.45 ~1.0mm >95	>90 (for gel)	Substitute of 001%7MB, with dark black color appearance for convenience to operate.

physical strength*

for macroporous resins: spherical percentage after osmosis shock and then grading

for gel resins: spherical percentage after grading

<u>Back</u>

Condensate Polishing Resin Series

Product Name	Туре	Matrix	Function Group		Moisture Content %	Total Exchange Capacity (mmol/g)	Total Exchange Capacity (mmol/ml)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Physical Strongth* (%)	Applications
ZGJL101	super gel strongly acidic	polystyrene	-SO3-	Na ⁺	40~50	>4.4	>1.8	0.76 ~0.84	1.26~1.30	0.50 ~1.0mm >95	macroporous)	Specially used in high flow mixed bed system in condensate polishing, with even particle size, good hydraulic characteristics, higher ion
ZGJL301	super gel strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	40~50	>3.6	>1.4	0.66 ~0.75	1.06~1.11	0.45 ~0.80mm >95	5 OF (f	exchange capacity and good physical stability.
ZGC151-Z	macroporous strongly acidic	polystyrene	-SO3-	Na ⁺	45~55	>4.3	>1.7	0.75 ~0.85	1.25~1.28	0.50 ~1.0mm >95	macroporous)	Specially used in high flow mixed bed system in condensate polishing, with even particle size, good hydraulic characteristics, good physical
ZGA351-Z	macroporous strongly basic	polystyrene	-N ⁺ (CH >3) ₃	Cl	50	>3.8	>1.15	0.65 ~0.73	1.05 ~1.09	0.45 ~0.80mm >95	>95 (for macroporous)	stability, and good anti-oxidation property.

physical strength*

for macroporous resins: spherical percentage after osmosis shock and then grading

for gel resins: spherical percentage after grading

<u>Back</u>

Acrylic Acid Resin Series

Product Name	Туре	Matrix	Function Group	Ionic Form	Moisture Content %	Total Exchange Capacity (mmol/g)	Total Exchange Capacity (mmol/ml)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Applications
ZGA313	strongly basic	acrylic acid	-N ⁺ (R ₃)	CI	54~64	>4.2	>1.2	0.68 ~0.75	1.05~1.10	0.315~1.25mm	Preparation of pure water from high organic water source. The resin has high operating exchange property, and strong anti-pollution characteristics.
ZGA313FC	strongly basic	acrylic acid	-N ⁺ (R ₃)	Cl	54~64	>4.2	>1.2	0.68 ~0.75	1.05~1.10		Preparation of pure water from high organic in water source, especially used in floating bed system.
ZGA314	strongly, weakly basic	acrylic acid	$<^{N^{*}(R_3)}_{N(R_2) \cdot H_2 0}$	Cl ⁻ /free amine	57~63	>4.6	>1.4	0.68 ~0.73	1.05~1.10	0.315~1.25mm	Preparation of pure water from high organic water source. It can be used in single bed instead of two bed, double compartment floating bed systems.
ZGA314FC	strongly, weakly basic	acrylic acid	$<^{-N^*(R_3)}_{-N(R_2) \cdot H_2 0}$	Cl ⁻ /free amine	57~63	>4.6	>1.4	0.68 ~0.73	1.05~1.10		Preparation of pure water from high organic water source, especially suitable for floating bed system.
	macroporous strongly basic	acrylic acid	-N ⁺ (R ₃)	Cl	65~75	-	>0.8	0.65 ~0.72	1.03~1.10		Chiefly used as organic scavanger, also used in decoloration as adsorbing resin.

ZGA412	weakly basic	acrylic acid	-N(R ₂)-H ₂ O	free amine	54~64	>5.3	>1.6	0.66 ~0.74	1.04~1.09	0.315~1.25mm	Preparation of pure water with high organic and high salt content water source, with high operating exchange capacity and low in regeneration.
ZGD620	macroporous weakly basic	acrylic acid	-N(R ₂)-H ₂ O	free amine	64~72	-	>1.0	0.63 ~0.70	1.04~1.09	0.315~1.25mm	Preparation of pure water from high organic water source, with very excellent anti-pollution property against organic.
ZGD630	macroporous weakly basic		-N(R ₂).H ₂ O	free amine	48~55	-	>2.8	0.66 ~0.74	1.06~1.12		Desalination of sea water, sulfates removal in various water solution and non-polar solutions.
ZGA640	weakly basic	acrylic acid	-N(R ₂)-H ₂ O	free amine	52 ~60	-	>1.55	0.64 ~0.72	1.04 ~1.10	0.315~1.25mm	Desalination and organic removal water solution or non-polar solution (such as sugar, glutin) in food , drinking, and light industries.

<u>Back</u>

Chelating Resin Series

Product Name	Туре	Matrix	Function Group	Moisture Content %	Total Exchange Capacity (mmol/ml)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	pH Range	Applications
ZGD840	macroporous thiouryl chelating resin	polystyrene	$-CH_2-S-C \ll {NH \atop NH_2}$	46~52	>2.0	0.70 ~0.74	1.10~1.16	0.45 ~1.25mm >95	1~6	Used for separation and recovery of free state mercury and noble metals in waste water. The resin has even particle size and good mechanical strength.
ZGD850	macroporous amino diacetyl chelating resin	polystyrene	-CH2-N <ch2cooh CH2COOH</ch2cooh 	46~52	>1.0	0.72 ~0.76	1.10~1.16	0.45 ~1.25mm >95	1~6	Used for separation and recovery of high valence metal ions and transition elements ions. The resin has even particle size and good mechanical strength.
ZGD860	macroporous amino phosphonyl chelating resin	polystyrene	$-CH_2NHCH_2P \stackrel{0}{<} \stackrel{0}{(OH)}_2$	58 ~64	>2.8	0.70 ~0.77	1.08 ~1.16	0.45 ~1.25mm >95	1~14	Used for separation and recovery of heavy metal ions, especially for the heavy metal in the dischange and waste water in mining and petroleum refinery. It has excellent adsorbing property.

<u>Back</u>

Wet Metallurgy Resin Series

Product Name	Туре	Matrix	Function Group		Moisture Content %	Total Exchange Capacity (mmol/g)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Applications
ZGA307- W	strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	40~50	>3.6	0.66 ~0.72	1.05~1.10	0.40 ~0.80mm >95	Separation of tungsten and molybdenum in wet metallurgy,
ZGA454- W	macroporous weakly basic	acrylic acid	-N(R ₂)·H ₂ O	free amine	60~65	>7.0	0.65 ~0.75	1.06~1.10	0.40 ~0.80mm >95	adsorption and purification of ammonium tungsten.
ZGA353	macroporous strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	50~60	>3.8	0.65~0.73	1.05~1.10	0.315 ~1.25mm >95	Concentration and purification of uranium or uranium mine waste water, concentration and purification of thorium, plutonium, uranium in nucleus industry, recovery of vanadium from waste water in ammonia industry.
ZGA455	macroporous weakly basic	polystyrene	-N ⁺ (CH ₃) ₂ H ₂ O	free amine	50 ~60	>4.8	0.65 ~0.75	1.02 ~1.08	0.315 ~1.25mm >95	Adsorption and recovery of gold containing waste water, Adsorption and recovery of Cr^{+6} in Cr. containing waste water, Adsorption and recovery mercury in mercury containing waste water.

<u>Back</u>

Medication, Amino Acid Extraction Resin Series

Product Name	Туре	Matrix	Function Group	Ionic Form	Moisture Content %	Total Exchange Capacity (mmol/g)	Total Exchange Capacity (mmol/ml)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Applications
ZGC104	strongly acidic	polystyrene	-SO3-	Na ⁺	55~65	>4.55	>1.4	0.75 ~0.85	1.16~1.22	0.40 ~1.25mm >95	Separation and extraction of antibiotics.
ZGSR1-1	strongly acidic	polystyrene	-SO3-	Na ⁺	56~63	>4.6	>1.2	0.70 ~0.75	1.18~1.25	0.315 ~1.25mm >95	
ZGS-9	macroporous strongly acidic	polystyrene	-SO3 ⁻	Na ⁺	55~65	>4.0	>1.2	0.73 ~0.81	1.17~1.22	0.315 ~1.25mm >95	Separation and purification of aminoacids.
	macroporous weakly acidic	acrylic acid	-COO ⁻	H^+	45~55	>9.0	>3.6	0.70 ~0.78	1.10~1.16		Separation and purification of antibiotics and biochemical medicine.
ZGA354	macroporous strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	Cl	75 ~85	>4.5	>0.65	0.60 ~0.70	1.03 ~1.07		Extraction of biochemical, especially suitable for heparin from intestines.

<u>Back</u>

Amphoteric Resin Series

Product Name	Туре	Matrix	Function Group	Moisture Content %	Total Exchange Capacity (mmol/g)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Applications
ZGTP-1	strongly basic, weakly acidic amphoteric resin		$<^{-N + (CH_{s})_{3}}_{COO^{-}}$	15 ~25	>4.5	0.68 ~0.78	1.10 ~1.20	0.315 ~1.25mm >95	Chiefly used in the separation of electrolytes of high molecular weights and low molecular weights, such as removal of sulfate ion in memprane soda industry, separation and purification of biochemical medicines, purification and desalination of protein(especially concentration salt solutions), waste water treatment in polyacrylouitrile spinning, separation and removal of inorganic salts in cane sugar solutions.

Back

Decolorizing Resin Series

Product Name	Туре	Matrix	Moisture Content %	Total Exchange Capacity (mmol/g)	Total Exchange Capacity (mmol/ml)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Applications
ZGD730	macroporous strongly basic	acrylic acid	65~75	-	>0.8	0.65 ~0.72	1.03~1.10	0.315 ~1.25mm >95	Decoloration in aqueous and non-aqueous solutions, also as organic scavanger.
ZGD750	macroporous strongly basic	polystyrene	65~70	-	>0.8	0.66 ~0.72	1.04~1.10	0.315 ~1.25mm >95	Decoloration of sugar liquor, aqueous and non-aqueous, and organic removal.
ZGA454	macroporous weakly basic	acrylic acid	60~65	>7.0	>1.5	0.65 ~0.75	1.06~1.10		Decoloration of sugar liquor, extraction of biochemical medicines, decoloration in aqueous solutions and removal of organic.

<u>Back</u>

Macroporous Adsorbent Series

Product Name	Туре	Matrix	Moisture Content(%)	Specific Surface Area (m ² /g)	Pore Dimension (ml/g)	Applications
ZGSD300	aromatic macroporous adsorbent	polystyrene	45~55	750~800	>0.8	
ZGSD301	aromatic macroporous adsorbent	polystyrene	53~63	650~700		Adsorption and separation of non-polar substances in polar solution, decoloration and clearing of waste water in food and drinking industries.
ZGSD302	aromatic macroporous adsorbent	polystyrene	60 ~70	550 ~600	>0.9	

<u>Back</u>

Catalysis Resin Series

Product Name	Туре	Matrix	Moisture Content %	Total Exchange Capacity (mmol/g)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Specific Surface Area (m ² /g)	Average Pore Size (?)	Highest Operating Temp (?)	Applications
ZGCD350	strongly acidic	-SO3 ⁻	55~65	>4.55	0.75 ~0.82	1.16~1.22	0.315 ~1.25mm >95	-	-	120	As catalysts in synthetic chemical industry, such as polymerization, epoxidizing, peroxidizing reactions.
ZGCD450	strongly acidic	-SO3 ⁻	40~50	>4.5	0.77 ~0.87	1.25~1.29	0.315 ~1.25mm >95	-	-	120	As catalysts in synthetic industry, such as polymerization, epoxdizing reaction, peroxidizing reactions, especially suitable for esters of unsaturated fatty acids and catalysis of soybean oil.
ZGCD550	macroporous strongly acidic	-SO3 ⁻	45~55	>4.8	0.78 ~0.88	1.23~1.28	0.45 ~1.25mm >95	40~50	200~300	120	As catalysts in synthetic industry for etherification and degradation of aether chain, especially suitable for the catalytic synthesis of methyl-terliary butyl aether (MTBE).
ZGCD650	macroporous strongly acidic	-SO3-	50~60	>5.0	0.75 ~0.85	1.23~1.28	0.45 ~1.25mm >95	40~50	300~400	120	As catalysts in hydrolysis reactions such as hydrolysis of esters, cane sugar and polysaccharides.
	macroporous weakly basic	-N(CH ₃) ₂ H ₂ O	50~58	>5.0	0.68 ~0.72	1.02 ~1.10	0.45 ~1.25mm >95	25~32	60~100	100	Deacidifying various non-polar solutions.

<u>Back</u>

Food, Drink Water Treatment Resin Series

Product Name	Туре	Matrix	Function Group	Ionic Form	Moisture Content %	Total Exchange Capacity (mmol/g)	Shipping Weight (g/ml)	True(Wet) Density (g/ml)	Particle Size Range (%)	Applications
ZGC257	macroporous weakly acidic	acrylic acid	-COO ⁻	H^{+}	53~61	>9.5	0.70 ~0.76	1.14~1.20	0.315 ~1.25mm >95	Specially used for family or group use small ion exchange equipment to soften or de-alkalize drinking water or living water.
ZGD890	macroporous strongly basic	polystyrene	-N ⁺ (CH ₃) ₃	CI	50~60	>3.7	0.66 ~0.72	1.06~1.10		Specially used for tap water and drinking water to removal nitrates and nitrites. This resin has high selectivity for nitrate ion.
ZGC151-FD	macroporous strongly acidic	polystyrene	-SO3-	Na ⁺	45~55	>4.35	0.75 ~0.85	1.25~1.28	0.315 ~1.25mm >95	
ZGJ101-FD	strongly acidic	polystyrene	-SO3-	Na ⁺	45~50	>4.5	0.77 ~0.87	1.25~1.29	0.45 ~1.0mm >95	
ZGC257-FD	macroporous weakly acidic	acrylic acid	-COO ⁻	H^{+}	53~61	>9.5	0.70 ~0.76	1.14~1.20	0.315 ~1.25mm >95	
ZGA352-FD	macroporous strongly basic type II	polystyrene	$-N^{*} <_{C_{2}H_{4}OH}^{(CH_{3})_{2}}$	CI	47~57	>3.4	0.68 ~0.76	1.09~1.16	0.315 ~1.25mm >95	
ZGA455-FD	macroporous weakly basic	polystyrene	-N(CH ₃) ₂ ·H ₂ O	free amine	48~58	>4.8	0.65 ~0.75	1.02~1.08	0.315 ~1.25mm >95	
ZGA454-FD	macroporous weakly basic	acrylic acid	-N(R ₂)·H ₂ O	free amine	60 ~65	>7.0	0.65 ~0.75	1.06 ~1.10	0.315 ~1.25mm >95	

<u>Back</u>

Nuclear Grade Resin Series

Product Name	Туре	Matrix	Ionic Form	Particle Size Range (mm)	Shipping Weight (g/ml)	Highest Operating Temp (?)	Product Name	Applications	
ZGNR100	nuclear grade mixed resin	styrene-DVB copolymer	H ⁺ /OH ⁻	0.60~0.80	0.72 ~0.77	60	NR100	Non-regenerated resin. Suitable for condensate polishing, radioactive waste water treatr	
ZGNR120	nuclear grade mixed resin	styrene-DVB copolymer	H ⁺ /OH ⁻	0.60~0.80	0.72 ~0.77	60	NR120	primary cycle water clearing in nuclear power station reactors.	
ZGNR200	electronic mixed resin	styrene-DVB copolymer	H ⁺ /OH ⁻	0.40~1.20	0.73 ~0.78	60	NR200	Non-regenerated resin. Suitable for preparation of super pure water equipment and	
ZGNR220	electronic mixed resin	styrene-DVB copolymer	H ⁺ /OH ⁻	0.40~1.20	0.73 ~0.78	60	NR220	polishing, in electronic industries to satisfy the strict specifications of water quality for electronic use.	

<u>Back</u>

Nuclear Grade Resin Standards

item	unit	cation resin	anion resin
Total Volume Exchange Capacity	mmol/ml	>1.8	>1.3
Ionic Content			
H^+	%	>99.0	-
OH	%	-	>95.0
Cl	%	-	<0.3
CO ₃ ⁼	%	-	<5.0
so ₄ =	%	-	<0.2
Na ⁺	mg/kg-R(Dry)	<50	<40
Fe ⁺⁺	mg/kg-R(Dry)	<50	<50
Heavy Metals(as Pb)	mg/kg-R(Dry)	<20	<20
Extracting Matter	%(Dry)	<0.1	>0.1

Back